

PY32F002B-C Datasheet

32-bit ARM[®] Cortex[®]-M0+ Microcontroller

Puya Semiconductor (Shanghai) Co., Ltd.

PUYA

PY32F002B-C Series

32-bit ARM® Cortex®-M0+ Microcontroller

Features

- Core
 - ARM® 32-bit Cortex®-M0+ CPU
 - Frequency up to 48 MHz
- Memories
 - Up to 24 KB Flash memory
 - Up to 3 KB SRAM
- Clock management
 - 24/8/4 MHz High-speed internal RC oscillator (HSI)
 - 32.768 kHz Low-speed internal RC oscillator (LSI)
 - 32.768 kHz Low-speed external crystal oscillator (LSE)
 - External clock input
- Power management and reset
 - Operating voltage: 1.7 to 5.5 V
 - Low power mode: Sleep/Stop
 - Power-on/power-down reset (POR/PDR)
 - Brown-out reset (BOR)
- General-purpose input and output (I/O)
 - Up to 18 l/Os, all available as external interrupts
- 1 x 12-bit ADC
 - Up to 8 external channels and 3 internal channels
 - Voltage reference options: $V_{\text{REFBUF}}(1.5$ /2.048 /2.5 V) and V_{CC}
- Timers
 - 1 x 16-bit advanced-control timer (TIM1)
 - 1 x 16-bit general-purpose timer (TIM14)

- 1 x low power timer (LPTIM), supports wakeup from Stop mode
- 1 x independent watchdog timer (IWDG)
- 1 x SysTick timer
- Communication interfaces
 - 1 x serial peripheral interface (SPI)
 - 1 x universal synchronous/asynchronous transceiver (USART) with automatic baud rate detection
 - 1 x I²C interface, supporting Standard mode(100 kHz), Fast mode (400 kHz), 7-bit addressing mode
- Hardware CRC-32 module
- 2 x comparators
- Unique UID
- Serial wire debug (SWD)
- Operating temp. (x6 version):-40 to 85 °C
- Operating temp. (x7 version):-40 to 105 °C
- Packages: TSSOP20, SOP16, SOP8

Conten	t
--------	---

Fe	atu	es		2
1.	In	trod	uction	5
2.	F	unct	ional overview	8
	2.1.	А	rm®-Cortex®-M0+ core	8
	2.2.	N	lemories	8
	2.3.	В	oot modes	8
	2.4.	С	lock management	9
	2.5.	Ρ	ower management	.10
	2.	5.1.	Power block diagram	.10
	2.	5.2.	Power monitoring	.10
	2.	5.3.	Voltage regulator	.11
	2.	5.4.	Low-power mode	.11
	2.6.	R	eset	.11
	2.	6.1.	Power reset	.11
	2.	6.2.	System reset	.11
	2.7.		eneral-purpose inputs and outputs (GPIOs)	
	2.8.	Ir	iterrupts and events	.12
	2.	8.1.	Nested vectored interrupt controller (NVIC)	.12
	2.	8.2.	Extended interrupt/event controller (EXTI)	.12
	2.9.	А	nalog-to-digital converter (ADC)	.13
	2.10		Comparators (COMP)	.13
	2.	10.1	. COMP main features	.13
	2.11		Timers	.14
	2.	11.1	. Advanced-control timer (TIM1)	.14
	2.	11.2	. General-purpose timer (TIM14)	.14
	2.	11.3	. Low power timer	.14
	2.	11.4	. IWDG	.14
	2.	11.5	. SysTick timer	.15
	2.12		Inter-integrated circuit interface (I ² C)	.15
	2.13		Universal synchronous/asynchronous receiver transmitter (USART)	.16
	2.14		Serial peripheral interface (SPI)	.17
	2.15		SWD	.17
3.	Ρ	inou	ts and pin descriptions	.18
	3.1.	А	Iternate functions selected through GPIOA_AFR registers for port A	.23
	3.2.	А	Iternate functions selected through GPIOB_AFR registers for port B	.23
	3.3.	А	Iternate functions selected through GPIOC_AFR registers for port C	.24
4.	Μ	emo	ry mapping	.25
5.	Е	lectr	ical characteristics	.28
	5.1.	Р	arameter conditions	.28

5.1.1.	Minimum and maximum values	28
5.1.2.	Typical values	
5.1.3.	Power supply scheme	28
5.2. Ab	solute maximum ratings	29
5.3. Op	erating conditions	29
5.3.1.	General operating conditions	29
5.3.2.	Operating conditions at power-on / power-down	30
5.3.3.	Embedded reset	
5.3.4.	Supply current characteristics	31
5.3.5.	Wake-up time from low-power mode	
5.3.6.	External clock source characteristics	
5.3.7.	High-speed internal (HSI) RC oscillator	
5.3.8.	Low-speed internal (LSI) RC oscillator	35
5.3.9.	Memory characteristics	
5.3.10.	EFT characteristics	
5.3.11.	ESD & LU characteristics	
5.3.12.	Port characteristics	36
5.3.13.	ADC characteristics	
5.3.14.	Comparator characteristics	
5.3.15.	Temperature sensor characteristics	40
5.3.16.	Embedded internal voltage reference(V _{REFINT}) characteristics	40
5.3.17.	Internal voltage reference buffer (V _{REFBUF}) characteristics	40
5.3.18.	COMP voltage reference buffer characteristics	40
5.3.19.	Timer characteristics	41
5.3.20.	Communication interfaces	41
6. Packag	e information	45
6.1. TS	SOP20 package size	45
6.2. SC	P16 package size	46
6.3. SC	P8 package size	47
7. Orderin	ng information	48
8. Versior	history	49

1. Introduction

The PY32F002B-C incorporates the high-performance ARM[®] 32-bit Cortex[®]-M0+ core operating at up to 48 MHz frequency, embedded memories with up to 24 KB Flash and 3 KB SRAM, and is available in multiple package options. The PY32F002B-C integrates I²C, SPI, USART and other communication peripherals, one 12-bit ADC, two 16-bit timers, and two comparators.

The PY32F002B-C operates in the -40 to 85°C or -40 to 105 °C temperature ranges from a 1.7 to 5.5 V power supply, and provides Sleep and Stop low power operating modes, which can meet different low-power applications.

These features make the PY32F002B-C suitable for a wide range of applications such as controllers, portable devices, PC peripherals, gaming and GPS platforms, as well as industrial applications.

Р	eripherals	PY32F002BF15P6-C	PY32F002BL15S6-C	
F	Flash (KB)	24	24	
S	SRAM (KB)	3	3	
	Advanced-control (TIM1)	1 (16-	-bit)	
	General-purpose(TIM14)	1 (16-	-bit)	
Timers	Low power	1		
	SysTick	1		
	Watchdog	1		
	SPI	1		
Comm. interfaces	I ² C	1		
	USART	1		
	GPIOs	18	6	
(exte	ADC rnal + internal)	8+3	6+3	
C	omparators	2	1	
Max.	CPU frequency	48 MHz		
Operat	ing temperature	-40 to 85 °C		
Оре	erating voltage	1.7 to 5.5 V		
	Packages	TSSOP20	SOP8	

Table 1-1 PY32F002B-C x6 series product features and peripheral count

	Peripherals	PY32F002BW15S7-C	
	Flash (KB)	24	
	SRAM (KB)	3	
	Advanced-control (TIM1)	1 (16-bit)	
	General-purpose(TIM14)	1 (16-bit)	
Timers	Low power	1	
	SysTick	1	
	Watchdog	1	
	SPI	1	
Comm. interfaces	l ² C	1	
	USART	1	
	GPIOs	14	
	ADC	7.12	
	(external + internal)	7+3	
	Comparators	1	
	Max. CPU frequency	48 MHz	
(Operating temperature	-40 to 105 °C	
	Operating voltage	1.7 to 5.5 V	
	Packages	SOP16	

Table 1-2 PY32F002B-C x7 series product features and peripheral counts

Figure 1-1 System block diagram

2. Functional overview

2.1. Arm[®]-Cortex[®]-M0+ core

The Arm® Cortex[®] -M0+ is an Arm 32-bit Cortex processor designed for embedded applications. It provides developers with significant benefits, including:

- Simple architecture for easy learning and programming
- Ultra-low power consumption for energy-efficient operation
- Reduced code density

The Arm® Cortex-M0+ processor is a 32-bit core optimized for area and power consumption and is a 2-stage pipeline Von Neumann architecture. It delivers high performance through a streamlined instruction set and hardware enhancements like a single-cycle multiplier. Outperforms 8/16-bit MCUs in code efficiency.

The Cortex-M0+ is tightly coupled with a Nested Vectored Interrupt Controller (NVIC).

2.2. Memories

Embedded SRAM is accessed by byte (8 bits), half-word (16 bits) or word (32 bits).

The Flash memory is composed of two distinct physical areas:

- 24 KB of Main flash area for user programs and data. In addition, a maximum of 4 KB Load flash can be set as a user boot loader according to customer configuration.
- 768 Bytes of Information area:
 - Option bytes
 - UID bytes
 - Factory configuration bytes
 - USER OTP memory

The protection of Main flash area includes the following mechanisms:

- Write protection (WRP) prevents unintended writes (caused by confusion of program). The minimum protection unit for write protection is 4 KB.
- Option byte write protection is a special design for unlock.
- SDK (Software design kit) protection is used to protect the access of specific program areas.

2.3. Boot modes

At startup, the nBOOT0 pin and nBOOT1 (stored in option bytes) are used to select one of the three boot options in the following table:

Boot mode configuration		Mode	
nBOOT1 bit nBOOT0 bit		Boot memory size == 0	Boot memory size != 0
X	0	Boot from Main flash	Boot from Main flash
0	1	Boot from SRAM	Boot from SRAM
1	1	N/A	Boot from Load flash

Table 2-1 Boot configuration

2.4. Clock management

System clock selection is performed on startup, however the internal RC 24 MHz oscillator is selected as default CPU clock on reset. After the program is operating the system clock frequency and system clock source can be reconfigured. The frequency clocks that can be selected are:

- A 48/24/8/4 MHz configurable internal high precision HSI clock
- A 32.768 kHz configurable LSI clock
- A 32.768 kHz LSE clock.

The AHB clock can be divided based on the system clock, and the APB clock can be divided based on the AHB clock. The maximum frequency of the AHB and the APB domains is 48 MHz.

Figure 2-1 System clock structure diagram

2.5. Power management

2.5.1. Power block diagram

Figure 2-2 Power block diagram

Table 2-2 Power block diagram

No.	Power supply	Power value	Descriptions	
1	V _{cc}	1.7 to 5.5 V	The power is supplied to the chip through the power pins, with the power supply module comprising: Partial analog circuits	
2	V _{CCA}	1.7 to 5.5 V	Powers for most analog modules, sourced from the V_{CC} PAD (a dedicated power PAD can also be designed separately).	
3	V _{CCIO}	1.7 to 5.5 V	V Power to IO from V _{CC} PAD	

2.5.2. Power monitoring

2.5.2.1. Power-on reset /power-down reset(POR/PDR)

The Power-on reset (POR) and Power-down reset (PDR) module is designed in the chip to provide power-on and power-down reset for the chip. The module keeps working in all modes.

2.5.2.2. Brown-out reset (BOR)

In addition to POR/ PDR, BOR (Brown-out reset) is also implemented. BOR can only be enabled and disabled through the option byte.

When the BOR is turned on, the BOR threshold can be selected by the option byte and both the rising and falling detection points can be individually configured.

Figure2-3 POR/PDR/BOR threshold

2.5.3. Voltage regulator

The regulator has two operating modes:

- MR (Main regulator) is used in normal operating mode (Run).
- LPR (Low power regulator) provides an option for even lower power consumption in Stop mode.

2.5.4. Low-power mode

In addition to the normal operating mode, the chip has two low-power modes:

- Sleep mode: Peripherals can be configured to keep working when the CPU clock is off (NVIC, SysTick, etc.). It is recommended only to enable the modules that must work, and close the module after the module works.
- Stop mode: The contents of SRAM and registers are maintained and HSI is turned off. GPIO, IWDG, NRST and LPTIM can wake up Stop mode.

2.6. Reset

Two resets are designed in the chip: power reset and system reset.

2.6.1. Power reset

A power reset occurs in the following situations:

- Power-on/power- down reset (POR/PDR)
- Brown-out reset (BOR)

2.6.2. System reset

A system reset occurs when the following events occur:

- Reset of NRST pin
- Independent watchdog reset (IWDG)

- SYSRESETREQ software reset
- Option byte load (OBL) reset

2.7. General-purpose inputs and outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (floating, pull-up/down, analog) or as peripheral alternate function. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.8. Interrupts and events

The PY32F002B-C handles exceptions through the Cortex-M0+ processor's embedded a nested vectored interrupt controller (NVIC) and an extended interrupt/event controller (EXTI).

2.8.1. Nested vectored interrupt controller (NVIC)

NVIC is a tightly coupled IP inside the Cortex-M0+ processor. The NVIC can handle NMI (Non-Maskable Interrupts) and maskable external interrupts from outside the processor and Cortex-M0+ internal exceptions. NVIC provides flexible priority management.

The tight coupling of the processor core to the NVIC greatly reduces the delay between an interrupt event and the initiation of the corresponding interrupt service routine (ISR). The ISR vectors are listed in a vector table, stored at a base address of the NVIC. The vector table base address determines the vector address of the ISR to execute, and the ISR is used as the offset composed of serial numbers.

If a higher-priority interrupt event occurs and a lower-priority interrupt event is just waiting to be serviced, the later-arriving higher-priority interrupt event will be serviced first. Another optimization is called tail-chaining. When returning from a higher-priority ISR and then starting a pending lower-priority ISR, unnecessary pushes and pops of processor contexts will be skipped. This reduces latency and improves power efficiency.

NVIC features:

- Low latency interrupt handling
- Level 4 interrupt priority
- Support 1 NMI
- Support 13 maskable external interrupts
- Support 6 Cortex-M0+ exceptions
- High-priority interrupts can interrupt low-priority interrupt responses
- Support tail-chaining optimization
- Hardware interrupt vector retrieval

2.8.2. Extended interrupt/event controller (EXTI)

EXTI adds flexibility to handle physical wire events and generates wake-up events when the processor wakes up from Stop mode.

The EXTI controller has multiple channels, including up to 18 GPIOs can be connected to the 8 EXTI lines, 2 COMP outputs, and a LPTIM wake-up signals. GPIO and COMP can be configured to be

triggered by a rising edge, falling edge or double edge. Any GPIO signal can be configured as EXTI0 to 7 channel through the select signal.

Each EXTI line can be independently masked through registers.

The EXTI controller can capture pulses shorter than the internal clock period.

Registers in the EXTI controller latch each event. Even in Stop mode, after the processor wakes up from Stop mode, it can identify the wake-up source or identify the GPIO and event that caused the interrupt.

2.9. Analog-to-digital converter (ADC)

The PY32F002B-C has a 12-bit SAR-ADC. The module has a total of up to 11 channels to be measured, including 8 external and 3 internal channels.

The ADC internal voltage reference: V_{REFBUF} (1.5 V, 2.048 V, 2.5 V) or the power supply voltage V_{CC} . The internal channels are : T_{S_VIN} , V_{REFINT} , $V_{CC}/3$.

A/D conversion of the various channels can be performed in single, continuous, scan or discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit data register.

The analog watchdog feature allows the application to detect if the input voltage goes outside the user-defined higher or lower thresholds.

An efficient low-power mode is implemented to allow very low consumption at low frequency.

Analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers.

2.10. Comparators (COMP)

General purpose comparators are integrated, which can be used in combination with Timers.

Comparators can be used as :

- Triggered by analog signal to wake-up function from low-power mode
- Analog signal conditioning
- Cycle by cycle current control loop when comparators are connected with PWM output from timer.

2.10.1. COMP main features

- Each comparator has configurable positive or negative input for flexible voltage selection:
 - Multiple I/O pins
 - Power supply V_{CC} and 15 submultiple values (1/16, 2/16... 15/16) provided by voltage divider
 - The internal voltage reference buffer (1.5 V, 2.048 V, 2.5 V) and 15 submultiple values (1/16, 2/16... 15/16) provided by voltage divider
- The output can be triggered by a connection to the I/O or timer input
 - OCREF_CLR event (cycle by cycle current control)
 - Brakes for fast PWM shutdown

2.11. Timers

The different timers feature as blow:

		Counter			Conturoloomnoro	Complementary
Timer type	Timers	resolution	Counter type	Prescaler	Capture/compare channels	outputs
Advanced-control	TIM1	16-bit	up,down, up/down	1 - 65536	4	3
General-purpose	TIM14	16-bit	up	1 - 65536	1	-

Table 2-3 Timer characteristics

2.11.1. Advanced-control timer (TIM1)

The advanced-control timer (TIM1) is consist of a 16-bit auto-reload counter driven by a programmable prescaler. It can be used in various scenarios, including pulse length measurement of input signals (input capture) or generating output waveforms (output compare, output PWM, complementary PWM with dead-time insertion).

The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned mode)
- Single pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0 - 100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers by the Timer Link feature for synchronization or event chaining.

2.11.2. General-purpose timer (TIM14)

- The general-purpose timer TIM14 is consist of a 16-bit auto-reload counter driven by a programmable prescaler.
- TIM14 features two single channel for input capture/output compare, PWM or one-pulse mode output.
- The counter can be frozen in debug mode.

2.11.3. Low power timer

- LPTIM is a 16 -bit upcounter with a 3-bit prescaler and support a single count.
- LPTIM can be configured as a Stop mode wake-up source.
- The counter can be frozen in debug mode.

2.11.4. IWDG

The Independent watchdog (IWDG) is integrated in the chip, and this module has the characteristics of high-security level, accurate timing and flexible use. IWDG finds and resolves functional confusion

due to software failure and triggers a system reset when the counter reaches the specified timeout value.

- The IWDG is clocked by LSI, so even if the main clock fails, it can keep working.
- IWDG is the best suited for applications that require the watchdog as a standalone process outside of the main application and do not have high timing accuracy constraints.
- Controlling of option byte can enable IWDG hardware mode.
- IWDG is the wake-up source of Stop mode, which wakes up Stop mode by reset.
- The counter can be frozen in debug mode.

2.11.5. SysTick timer

This timer is dedicated to real-time operating systems (RTOS), but could also be used as a standard down counter.

SysTick features:

- A 24-bit down counter
- Auto-reload capability
- Maskable system interrupt generation when the counter reaches 0

2.12. Inter-integrated circuit interface (I²C)

The I²C (Inter-integrated circuit) bus interface handles communications between the microcontroller and the serial I²C bus. It provides multimaster capability, and controls all I²C bus-specific sequencing, protocol, arbitration and timing. It supports Standard-mode (Sm) and Fast-mode (Fm).

I²C features:

- Multimaster capability: can be Master or Slave
- Support different communication speeds
 - Standard mode (Sm): up to 100 kHz
 - Fast mode (Fm): up to 400 kHz
- As master
 - Generate clock
 - Generation of start and stop
- As slave
 - Programmable I²C address detection
 - Discovery of the STOP bit
- 7-bit addressing mode
- General call
- Status flag
 - Transmit/receive mode flags
 - Byte transfer complete flag
 - I²C busy flag bit
- Error flag
 - Master arbitration loss

- ACK failure after address/data transfer
- Start/Stop error
- Overrun/underrun (clock stretching function disable)
- Optional clock stretching
- Software reset
- Analog noise filter function

2.13. Universal synchronous/asynchronous receiver

transmitter (USART)

The USART provide a flexible method for full-duplex data exchange with external devices using the industry-standard NRZ asynchronous serial data format. The USART utilizes a fractional baud rate generator to provide a wide range of baud rate options.

It supports simultaneous one-way communication and half-duplex single-wire communication, and it also allows multi-processor communication.

Automatic baud rate detection is supported.

USART features:

- Full-duplex asynchronous communication
- NRZ standard format
- Configurable 16 times or 8 times oversampling for increased flexibility in speed and clock tolerance
- Programmable baud rate shared by transmit and receive, up to 3 Mbit/s(8 times oversampling)
- Automatic baud rate detection
- Programmable data length of 8 or 9 bits
- Configurable STOP bits (1 or 2 bits)
- Synchronous mode and clock output function for synchronous communication
- Single-wire half-duplex communication
- Independent transmit and receive enable bits
- Hardware flow control
- Transfer detection flag
 - Receive buffer full
 - Send empty buffer
 - End of transmission flags
- Parity control
 - Transmit parity bit
 - Check the received data byte
- Flagged interrupt sources
 - CTS change
 - Transmit data register empty
 - Transmission complete
 - Receive full data register

- Bus idle detected
- Overflow error
- Frame error
- Noise operation
- Detection error
- Multiprocessor communication
 - If the address does not match, enter silent mode
- Wake-up from silent mode: by idle detection and address flag detection

2.14. Serial peripheral interface (SPI)

The SPI allow the chip to communicate with external devices in half-duplex, full-duplex, and simplex synchronous serial communication. This interface can be configured in Master mode and provides the serial clock (SCK) for external slave devices. The interface can also work in a multi-master configuration.

The SPI features are as follows:

- Master or Slave mode
- 3-wire full-duplex simultaneous transmission
- 2-wire half-duplex synchronous transmission (with bidirectional data line)
- 2-wire simplex synchronous transmission (no bidirectional data line)
- 8-bit or 16-bit transmission frame selection
- Support multi-master mode
- 8 master mode baud rate prescale factors (max 12 MHz)
- Slave mode frequency (max 6 MHz)
- Both master and slave modes can be managed by software or hardware NSS: dynamic change of Master/Slave operating mode
- Programmable clock polarity and phase
- Programmable data order, MSB first or LSB first
- Dedicated transmit and receive flags that can trigger interrupts
- SPI bus busy status flag
- Motorola mode
- Interrupt-causing master mode faults or overloads
- 2 x 32-bit Rx and Tx FIFOs

2.15. SWD

An ARM SWD interface allows serial debugging tools to be connected to the PY32F002B-C.

3. Pinouts and pin descriptions

Figure 3-1 TSSOP20 Pinout1 PY32F002BF15P6-C (Top view)

Figure 3-3 SOP8 Pinout1 PY32F002BL15S6-C (Top view)

Timer type		Symbol	Definition		
		S	Supply pin		
Dintuno		G	Ground pin		
Pin type		I/O	Input / output pin		
	Ν		No internal connection		
I/O structure			COM		Standard 5 V I/O, with Analog switch function supplied by V_{CC}
		NRST	Bidirectional reset pin with embedded weak pull-up resistor		
Notes		-	Unless otherwise specified, all ports are used as analog inputs		
Notes			between and after reset		
Pin functions	Alternate functions	-	Function selected through GPIOx_AFR register		
	Additional functions	-	Functions directly selected/enabled through peripheral registers		

Table 3-1 Legend/abbreviations used in the pinout table

Packages		S				Pin fur	octions														
TSSOP20 F1	SOP16 W1	SOP8 L1	Reset	Pin type	I/O structure	Alternate functions	Additional functions														
						USART_CK															
1	-	-	PA5	I/O	СОМ	TIM1_CH1	-														
						TIM14_CH1															
						SPI_NSS															
2	12	6	PA6 ⁽⁴⁾	I/O	СОМ	USART_TX	ADC_IN3														
						EVENTOUT	External_clock_in														
						SPI_MOSI															
						USART_TX															
3	13	7	PA7 ⁽⁴⁾	I/O	СОМ	USART_RX	ADC_IN4														
						TIM1_CH4															
						МСО															
						SWDIO	NECT														
4	13	6	PCO-NRST (1) (2) (3) (4)	I/O	NRST	TIM1_CH1N	NRST														
																				EVENTOUT	ADC_IN5
5	14	7	PC1	1/0	СОМ	SPI_MISO	OSC32IN														
	45				СОМ	SPI_MOSI															
6	15	-	PB7	1/0	COM	TIM14_CH1	OSC32OUT														
7	16	8	V _{SS}	G	-	Gro	und														
						SPI_MISO															
8	10	5	PB6-SWDIO ⁽¹⁾⁽²⁾⁽³⁾		СОМ	USART_TX															
0	8 10 5 PB6-SWDIO(()(2)(5)		I/O	1/0		1/0	CON	I ² C_SDA	- ADC_IN6												
						SWDIO															
9	1	1	V _{cc}	S	-	Digital pov	ver supply														
						SPI_NSS															
10			PB5	I/O	СОМ	USART_RX															
10		-	PBJ	1/0	COM	TIM1_CH3	_														
						TIM14_CH1															
						USART_TX															
11	2	-	PB4	I/O	СОМ	I ² C_SDA	-														
					TIM1_BKIN																
						USART_CK															
12	3	-	PB3	I/O	СОМ	I ² C_SCL	-														
						TIM1_ETR															

Table 3-2 Pin definitions

Packages						Pin functions		
TSSOP20 F1	SOP16 W1	SOP8 L1	Reset	Pin type	I/O structure	Alternate functions	Additional functions	
						CMP1_OUT		
						SPI_SCK		
13			PB2	I/O	СОМ	USART_CTS		
13	4	-	PDZ	1/0	COM	TIM1_CH1N		
						TIM1_CH3		
						USART_RTS		
14	E	2	DD4		COM	TIM1_CH2N	ADC_IN0	
14	5	2	PB1	I/O	СОМ	TIM1_CH4	CMP1_INP	
						МСО	CMP1_INM	
						SPI_SCK		
15	6	3	PB0	1/0	СОМ	USART_CK	ADC_IN7	
15	0	3	PBU	I/O		TIM1_CH2	CMP1_INM	
						TIM1_CH3N		
16	7		PA0	I/O	СОМ	SPI_MOSI		
10	1	-	PAU	1/0	COM	TIM1_CH1	-	
17	8		PA1	1/0	СОМ	SPI_MISO		
	0	-	PAI	1/0	COM	TIM1_CH2	-	
						USART_RX		
						I ² C_SCL		
18	11	4	PA2-SWCLK ⁽¹⁾⁽²⁾⁽³⁾	I/O	СОМ	SWCLK	-	
						TIM1_CH4		
						CMP2_OUT		
						USART_TX	ADC_IN1	
19	-	-	PA3	I/O	СОМ	TIM1_CH2	CMP2_INP	
							CMP2_INM	
						USART_RX	ADC_IN2	
20	9	-	PA4	I/O	СОМ	TIM1_CH3	CMP2_INM	
						TIM14_CH1		

1. PB6, PA2, PC0 can select GPIO, NRST, or SWC/SWD functions through the option configuration.

option[1:0]	PA2	PB6	PC0
0/0(default)	SWCLK	NRST	SWDIO
0/1	SWCLK	NRST	SWDIO
1/0	SWCLK	GPIO	SWDIO
1/1	SWCLK	SWDIO	GPIO

- 2. After reset, when the option byte is configured to 0/0 (default state), PA2 和 PC0 are configured as SWCLK and SWDIO.
- 3. The internal pull-up resistor is activated when configured as SWDIO and the internal pull-down resistor is activated when configured as SWCLK.
- 4. Two IO ports are lead out on the same pin, only one of the IO ports can be used at the same time, and the other IO must be configured in analog mode (MODEy [1: 0] is 0B11).

22/50

3.1. Alternate functions selected through GPIOA_AFR

registers for port A

PortA	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	SPI_MOSI	-	TIM1_CH1	-	-	-	-	-
PA1	SPI_MISO	-	TIM1_CH2	-	-	-	-	-
PA2	SWC	USART_RX	TIM1_CH4	-	CMP2_OUT	-	I ² C_SCL	-
PA3	-	USART_TX	TIM1_CH2	-	-	-	-	-
PA4	-	USART_RX	TIM1_CH3	-	-	TIM14_CH1	-	-
PA5	-	USART_CK	TIM1_CH1	-	-	TIM14_CH1	-	-
PA6	SPI_NSS	USART_TX	-	-	-	-	·	EVENTOUT
PA7	SPI_MOSI	USART_TX	TIM1_CH4	USART_RX	МСО		-	

Table 3-3 Port A alternate functions mapping

3.2. Alternate functions selected through GPIOB_AFR

registers for port B

Table 3-4 Port B alternate function mapping

PortB	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB0	SPI_SCK	USART_CK	TIM1_CH2	TIM1_CH3N	-	-	-	-
PB1	-	USART_RTS	TIM1_CH2N	TIM1_CH4	MCO	-	-	-
PB2	SPI_SCK	USART_CTS	TIM1_CH1N	TIM1_CH3	-	-	-	-
PB3	-	USART_CK	TIM1_ETR	-	CMP1_OUT	-	I ² C_SCL	-
PB4	-	USART_TX	TIM1_BKIN	-	-	-	I ² C_SDA	-
PB5	SPI_NSS	USART_RX	TIM1_CH3	-	-	TIM14_CH1	-	-
PB6	SWD	USART_TX	SPI_MISO	-	-	-	I ² C_SDA	-
PB7	SPI_MOSI	-	-	-	-	TIM14_CH1	-	-

3.3. Alternate functions selected through GPIOC_AFR

registers for port C

PortC	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC0	SWD	-	TIM1_CH1N	-	-	-	-	EVENTOUT
PC1	SPI_MISO	-	-	-	-	-	-	-

Table 3-5 Port C alternate function mapping

4. Memory mapping

Figure 4-1 Memory mapping

Туре	Boundary address	Size	Memory area	Descriptions
05414	0x2000 8000-0x3FFF FFFF	-	Reserved ⁽¹⁾	-
SRAM	0x2000 0000-0x2000 0BFF	3 KB	SRAM	-
	0x1FFF 0300-0x1FFF FFFF	-	Reserved	-
	0x1FFF 0280-0x1FFF 02FF	128 Bytes	USER OTP memory	Store user data
	0x1FFF 0180-0x1FFF 01FF	128 Bytes	Factory configuration bytes 1	Store trimming data (including HSI trimming) and power-on verification code reading
	0x1FFF 0100-0x1FFF 017F	128 Bytes	Factory configuration bytes 0	HSI trimming data, Flash erase/write time configuration parameters
Code	0x1FFF 0080-0x1FFF 00FF	128 Bytes	Option bytes	Option bytes information
	0x1FFF 0000-0x1FFF 007F	128 Bytes	UID	Unique ID
	0x0800 6000-0x1FFE FFFF	-	Reserved	-
	0x0800 0000-0x0800 5FFF	24 KB	Main flash memory	-
	0x0000 6000-0x07FF FFFF	-	Reserved	-
	0x0000 0000-0x0000 5FFF 24 KB		Based on Boot configuration : 1.Main flash 2.Load flash 3.SRAM	-

Table 4-1 Memory boundary address

The address is marked as **Reserved**, which cannot be written, read as 0, and a response error is generated.

Bus	Boundary address	Size	Peripherals
	0xE000 0000-0xE00F FFFF	-	M0+
	0x5000 0C00-0x5FFF FFFF	-	Reserved
IOPORT	0x5000 0800-0x5000 0BFF	1 KB	GPIOC
IUPORT	0x5000 0400-0x5000 07FF	1 KB	GPIOB
	0x5000 0000-0x5000 03FF	1 KB	GPIOA
	0x4002 3400-0x4FFF FFFF	-	Reserved
	0x4002 300C-0x4002 33FF	1 KB	Reserved
	0x4002 3000-0x4002 3008	IND	CRC
AHB	0x4002 2400-0x4002 2FFF	-	Reserved
	0x4002 2000-0x4002 23FF	1 KB	Flash
	0x4002 1C00-0x4002 1FFF	-	Reserved
	0x4002 1900-0x4002 1BFF	1 KB	Reserved

Table 4-2 Peripheral register address

Bus	Boundary address	Size	Peripherals
	0x4002 1800-0x4002 18FF		EXTI
	0x4002 1400-0x4002 17FF	-	Reserved
	0x4002 1080-0x4002 13FF		Reserved
	0x4002 1000-0x4002 107F	— 1 KB	RCC
	0x4002 0000-0x4002 0FFF	-	Reserved
	0x4001 5C00-0x4001 FFFF	-	Reserved
	0x4001 5880-0x4001 5BFF		Reserved
	0x4001 5800-0x4001 587F	— 1 KB	DBG
	0x4001 3C00-0x4001 57FF	-	Reserved
	0x4001 381C-0x4001 3BFF		Reserved
	0x4001 3800-0x4001 3018	— 1 KB	USART1
	0x4001 3400-0x4001 37FF	-	Reserved
	0x4001 3010-0x4001 33FF		Reserved
	0x4001 3000-0x4001 300C		SPI1
	0x4001 2C50-0x4001 2FFF		Reserved
	0x4001 2C00-0x4001 2C4C	— 1 KB	TIM1
	0x4001 2800-0x4001 2BFF	-	Reserved
	0x4001 270C-0x4001 27FF		Reserved
	0x4001 2400-0x4001 2708	— 1 KB	ADC
	0x4001 0400-0x4001 23FF	-	Reserved
	0x4001 0220-0x4001 03FF		Reserved
APB	0x4001 0200-0x4001 021F	1 KB	COMP1/2
	0x4001 0000-0x4001 01FF		SYSCFG
	0x4000 8000-0x4000 FFFF	-	Reserved
	0x4000 7C28-0x4000 7FFF		Reserved
	0x4000 7C00-0x4000 7C24	— 1 KB	LPTIM
	0x4000 7400-0x4000 7BFF	-	Reserved
	0x4000 7018-0x4000 73FF		Reserved
	0x4000 7000-0x4000 7014	— 1 KB	PWR
	0x4000 5800-0x4000 6FFF	-	Reserved
	0x4000 5434-0x4000 57FF		Reserved
	0x4000 5400-0x4000 5430	— 1 KB	I ² C
	0x4000 3400-0x4000 53FF	-	Reserved
	0x4000 3014-0x4000 33FF		Reserved
	0x4000 3000-0x4000 0010	— 1 KB	IWDG
	0x4000 2400-0x4000 2FFF	-	Reserved
	0x4000 2054-0x4000 23FF	1 // P	Reserved
	0x4000 2000-0x4000 0050	— 1 KB	TIM14

Bus	Boundary address	Size	Peripherals
	0x4000 0000-0x4000 1FFF	-	Reserved

5. Electrical characteristics

5.1. Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS.}

5.1.1. Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100 % of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A(max)$ (given by the selected temperature range).

Data based on electrical characterization results, design simulations and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation.

5.1.2. Typical values

Unless otherwise specified, typical data is based on $T_A = 25$ °C and $V_{CC} = 3.3$ V. These data are for design guidance only and have not been tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95 % of the devices have an error less than or equal to the value indicated.

5.1.3. Power supply scheme

Figure 5 -1 Power supply scheme

5.2. Absolute maximum ratings

Stresses above the absolute maximum ratings listed in following tables may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Descriptions	Min	Max	Unit
V _{cc}	External mains power supply	-0.3	6.25	V
V _{IN}	Input voltage of other pins	-0.3	V _{CC} +0.3	V

 Main power V_{CC} and ground V_{SS} pins must always be connected to the external power supply, in the permitted range. Table 5-2 Current characteristics

SymbolDescriptionsMax ΣI_{VCC} Total current into sum of all V_{CC} power lines (source) ⁽¹⁾ 150 ΣI_{VSS} Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾ 150 $I_{IO(PIN)}^{(2)}$ Output current sunk by any I/O and control pin80 $Output current source by any I/O and control pin30\Sigma I_{IO(PIN)}^{(2)}Total output current sunk by sum of all I/Os and control pins120\Sigma I_{IO(PIN)}^{(2)}Total output current sourced by sum of all I/Os and control pins120$				
ΣI_{VSS} Total current out of sum of all V _{SS} ground lines (sink) ⁽¹⁾ 150 $I_{IO(PIN)}^{(2)}$ Output current sunk by any I/O and control pin 80 Output current source by any I/O and control pin 30 $\Sigma I_{IO(PIN)}^{(2)}$ Total output current sunk by sum of all I/Os and control pins 120	Symbol	Descriptions	Мах	Unit
$\frac{ _{O(PIN)} ^{(2)}}{ _{O(PIN)} ^{(2)}} \frac{ _{O(PIN)} ^{(2)}}{ _{O(PIN)} ^{(2)}} \frac{ _{O(PIN)} ^{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{(2)}} \frac{ _{O(PIN)} ^{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ _{O(PIN)} ^{O(PIN)}} \frac{ _{O(PIN)} ^{O(PIN)}}{ $	ΣI _{VCC}	Total current into sum of all V_{CC} power lines (source) ⁽¹⁾	150	mA
$\frac{I_{IO(PIN)}^{(2)}}{\text{Output current source by any I/O and control pin}} \qquad 30$ $\frac{1}{\Sigma I_{IO(PIN)}^{(2)}} \qquad \text{Total output current sunk by sum of all I/Os and control pins} \qquad 120$	ΣI _{VSS}	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	150	mA
Output current source by any I/O and control pin 30 ∑I _{IO(PIN)} ⁽²⁾ Total output current sunk by sum of all I/Os and control pins 120	. (2)	Output current sunk by any I/O and control pin	80	mA
ΣI _{IO} (PIN) ⁽²⁾	IO(PIN)	Output current source by any I/O and control pin	30	mA
ZI _{IO(PIN)} ^(c) Total output current sourced by sum of all I/Os and control pins	ΣI (2)	Total output current sunk by sum of all I/Os and control pins	120	mA
	ΣΙ _{ΙΟ(ΡΙΝ)} ⁽²⁾	Total output current sourced by sum of all I/Os and control pins	120	mA

1. Main power V_{CC} and ground V_{SS} pins must always be connected to the external power supply, in the permitted range.

2. These I/O types refer to the terms and symbols defined by pins.

Symbol	Descriptions	Conditions	Value	Unit
T _{STG}	Storage temperature range	-	-65 to +150	
т	Operating temperature range	x6 version	-40 to +85	°C
Τ _ο	Operating temperature range	X7 version	-40 to +105	

5.3. Operating conditions

5.3.1. General operating conditions

Table 5-4 General operating conditions

Symbol	Parameter	Condition	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	48	MHz
f _{PCLK}	Internal APB clock frequency	-	0	48	MHz
V _{cc}	Standard operating voltage	-	1.7	5.5	V
V _{IN}	I/O input voltage	-	-0.3	V _{CC} +0.3	V
т		x6 version	-40	85	
T _A	Ambient temperature	X7 version	-40	105	°C
т	lun ation to non-anatuma	x6 version	-40	90	
TJ	Junction temperature	X7 version	-40	110	°C

5.3.2. Operating conditions at power-on / power-down

Table 5-5 Operating conditions at power-on / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
+	V _{CC} rise rate	-	0	8	
I _{VCC}	V _{CC} fall rate	-	20	8	µs/V

5.3.3. Embedded reset

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{RSTTEMPO⁽¹⁾}	Reset temporization	-	-	4.0	7.5	ms
	Power-on/power-down	Rising edge	1.5(2)	1.6	1.7	v
V _{POR/PDR}	reset threshold	Falling edge	1.45	1.55	1.65 ⁽²⁾	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	50	-	mV
		BOR_LEV[2:0]=000 (Rising edge)	1.7 ⁽²⁾	1.8	1.9	
		BOR_LEV[2:0]=000 (Falling edge)	1.6	1.7	1.8(2)]
		BOR_LEV[2:0]=001 (Rising edge)	1.9(2)	2	2.1	
		BOR_LEV[2:0]=001 (Falling edge)	1.8	1.9	2(2)	
		BOR_LEV[2:0]=010 (Rising edge)	2.1 ⁽²⁾	2.2	2.3	
		BOR_LEV[2:0]=010 (Falling edge)	2	2.1	2.2(2)]
		BOR_LEV[2:0]=011 (Rising edge)	2.3(2)	2.4	2.5]
N/	DOD thread and	BOR_LEV[2:0]=011 (Falling edge)	2.2	2.3	2.4(2)	
V_{BOR}	BOR threshold	BOR_LEV[2:0]=100 (Rising edge)	2.5(2)	2.6	2.7	V V
		BOR_LEV[2:0]=100 (Falling edge)	2.4	2.5	2.6 ⁽²⁾	1
		BOR_LEV[2:0]=101 (Rising edge)	2.7(2)	2.8	2.9]
		BOR_LEV[2:0]=101 (Falling edge)	2.6	2.7	2.8(2)	
		BOR_LEV[2:0]=110 (Rising edge)	2.9(2)	3	3.1	1
		BOR_LEV[2:0]=110 (Falling edge)	2.8	2.9	3(2)	1
		BOR_LEV[2:0]=111 (Rising edge)	3.1 ⁽²⁾	3.2	3.3	1
		BOR_LEV[2:0]=111 (Falling edge)	3	3.1	3.2(2)	
V_BOR_hyst	BOR hysteresis	-	-	100	-	mV

Table 5-6 Embedded reset characteristics

1. Guaranteed by design, not tested in production.

2. Data based on characterization results, not tested in production.

5.3.4. Supply current characteristics

			Cond	itions				Ма	x ⁽¹⁾											
Symbol	System clock	Frequency	Code	Run	Peripheral clock	Flash sleep	Тур ⁽¹⁾	T _A = 85 °C	T _A = 105 °C	Unit										
					ON	DISABLE	1.8	2.1	2.3											
		48 MHz			OFF	DISABLE	1.3	1.6	1.7											
					ON	DISABLE	1.1	1.4	1.5											
	HSI	24 MHz 8 MHz				OFF	DISABLE	0.9	1	1.1	- mA									
	ПЭГ				ON	DISABLE	0.7	1.0	1.1											
				While(1)	Flash	OFF	DISABLE	0.5	0.8	0.9										
I _{CC(Run)}		4 MHz		FIASI	ON	DISABLE	0.5	0.8	0.9											
		4 10172													OFF	DISABLE	0.4	0.7	0.8	
		22 769 64-	700 kl l=		ON	DISABLE	160.4	240	270											
	LSI		OFF	DISABLE	159.6	240	270													
	32.768 kHz	22 769 647			ON	ENABLE	108.3	160	190	- μΑ										
		32.700 KTIZ			OFF	ENABLE	107.7	160	190											

Table 5-7 Current consumption in Run mode

1. Data based on characterization results, not tested in production.

Table 5-8 Current consumption in Sleep mode

		Co	onditions			Ма		
Symbol	System clock	Frequency	Peripheral clock	Flash sleep	Typ ⁽¹⁾	T _A =	T _A =	Unit
	System Clock	Frequency	Peripheral Clock	riash sieep		85 °C	105 °C	
			ON	DISABLE	1.2	1.5	1.7	
I _{CC(Sleep)}	HSI	48 MHz	OFF	DISABLE	0.7	0.76	0.8	mA
		24 MHz	ON	DISABLE	0.80	0.9	0.95	

		Co	onditions			Max ⁽¹⁾		
Symbol	System clock	Frequency	Peripheral clock	Flash sleep	Typ ⁽¹⁾	T _A =	T _A =	Unit
	System Clock	Frequency	Peripheral Clock	Flash sleep		85 °C	105 °C	
			OFF	DISABLE	0.50	0.56	0.6	
			ON	DISABLE	0.45	0.55	0.6	
		8 MHz	OFF	DISABLE	0.35	0.40	0.45	
		4 5411-	ON	DISABLE	0.35	0.45	0.5	
		4 MHz	OFF	DISABLE	0.3	0.35	0.4	
		32.768 kHz —	ON	DISABLE	159.3	240	270	
			OFF	DISABLE	158.9	240	270	
	LSI 32.768 kHz	ON	ENABLE	85.3	140	170	- μΑ	
		OFF	ENABLE	84.8	140	170		

1. Data based on characterization results, not tested in production.

Table 5-9 Current consumption in Stop mode

		Condition	s			Ма		
Symbol	V _{cc}	MR/LPR	LSI	Peripheral clock	Typ ⁽¹⁾	T _A =	T _A =	Unit
		Penpheral Clock		85 °C	105 °C			
		Regulator in MR mode (LPR = 00)	OFF	OFF	75.3	130	170	
				IWDG+LPTIM	1.7	20	40	
I _{CC(Stop)}	1.7 to 5.5 V	Regulator in LPR mode	ON	IWDG	1.7	20	40	μA
		(LPR = 01)		LPTIM	1.7	20	40	
			OFF	OFF	1.5	19	38	

1. Data based on characterization results, not tested in production.

5.3.5. Wake-up time from low-power mode

Symbol	Parameter ⁽¹⁾		Conditions	Typ ⁽²⁾	Max	Unit
t _{WUSLEEP}	Wake-up from Sleep mode to Run mode		-	6	-	CPU cycles
		Regulator in MR	HSI = 48 MHz as system clock	6.6	-	
4	Wake-up from Stop	(LPR = 00)	HSI = 24 MHz as system clock	7.4		
t _{WUSTOP}	mode to Run mode in Flash	Regulator in LPR	HSI = 48 MHz as system clock	10.2		μs
		(LPR = 01)	HSI = 24 MHz as system clock	11	-	

Table 5-10 Wake-up time from low-power mode

1. The wake-up time is measured from the wake-up time until the first instruction is read by the user program.

2. Data based on characterization results, not tested in production.

5.3.6. External clock source characteristics

5.3.6.1. High-speed external clock generated from an external source

In HSE bypass mode (HSEEN of RCC_CR is set), the corresponding IO acts as an external clock input port.

Figure 5-2 High-speed external clock timing diagram

	rabie e i i ingli epeca charnai ele				
Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	External clock source frequency	1	8	32	MHz
V _{HSEH}	Input pin high level voltage	0.7 *V _{CC}	-	V _{cc}	V
V _{HSEL}	Input pin low level voltage	Vss	-	0.3*V _{CC}	V
t _{W(HSEH)}	High or low time	15	_		ns
$t_{W(HSEL)}$		15	-	-	115
$t_{r(HSE)}$	Rise or fall time	_	_	20	ne
$t_{f(HSE)}$		_	-	20	ns

Table 5-11 High-speed external clock characteristics

1. Guaranteed by design, not tested in production.

5.3.6.2. Low-speed external clock generated from an external source

In the bypass mode of LSE (the LSEBYP of RCC_BDCR is set), the low-speed start-up circuit in the chip stops working, and the corresponding I/O is used as a standard GPIO.

Figure 5-3 Low-speed external clock timing diagram

Symbol	Parameter ⁽¹⁾	Min	Тур	Мах	Unit
f _{LSE_ext}	External clock source frequency	-	32.768	1000	kHz
V _{LSEH}	Input pin high level voltage	0.7* V _{CC}	-	-	V
V _{LSEL}	Input pin low level voltage		-	0.3* V _{CC}	V
t _{w(LSEH)} t _{w(LSEL)}	High or low time	450	-	-	ns
$t_{r(LSE)}$ $t_{f(LSE)}$	Rise or fall time	-	-	50	ns

Table 5-12 Low-speed external clock characte	eristics
--	----------

1. Guaranteed by design, not tested in production.

5.3.6.3. Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time.

Table 5-13 LSE oscillator characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
I _{CC} ⁽⁴⁾		LSE_DRIVER [1:0] = 00 ⁽³⁾	-	-	-	
		LSE_DRIVER [1:0] = 01,	- 0.8	0.0		μΑ
		Rm=70 Ω,C∟=6 pF		0.0	-	
	LSE current	LSE_DRIVER [1:0] = 10,				
		Rm=50,C _L =12 pF	-	1.1	-	
		LSE_DRIVER [1:0] = 11,		1.4	-	-
		Rm=50 Ω,C _L =12 pF	-			
t _{SU(LSE)} ^{(4) (5)}	⁵⁾ Startup time	LSE_DRIVER [1:0] = 00 ⁽³⁾	-	-	-	
		LSE_DRIVER [1:0] = 01,	0.00		s	
		Rm=70 Ω,C∟=6 pF	-	0.28	-	

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
		LSE_DRIVER [1:0] = 10,		0.42	-	
		Rm=50 Ω,C∟=12 pF	-			
		LSE_DRIVER [1:0] = 11,			-	
		Rm=50 Ω,C _L =12 pF	-			

1. Crystal/ceramic resonator characteristics are based on the manufacturer's datasheet.

2. Guaranteed by design, not tested in production.

- 3. Reserved is reserved and is not recommended.
- t_{SU(LSE)} is the startup time from enable (by software) to when the clock oscillation reaches a stable, measured for a standard crystal/resonator, which may vary greatly from crystal to resonator.

5. Data based on characterization results, not tested in production.

5.3.7. High-speed internal (HSI) RC oscillator

Table 5-14 HSI oscillator characteristic	s
--	---

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HSI}		$T_A = 25 \text{ °C}, V_{CC} = 3.3 \text{ V}$	47.66 ⁽²⁾	48	48.34(2)	MHz	
			23.83 ⁽²⁾	24	24.17 ⁽²⁾		
	HSI frequency		7.94 ⁽²⁾	8	8.06 ⁽²⁾		
			3.97 ⁽²⁾	4	4.03(2)		
$\Delta T_{emp(HSI)}$	HSI frequency drift over	T _A = -20 to 85 °C	-2 ⁽²⁾	-	2(2)		
	temperature	T _A = -40 to 105 °C	-3(2)	-	3(2)	%	
f _{TRIM} ⁽¹⁾	HSI trimming accuracy	-	-	0.1	-	%	
D _{HSI} ⁽¹⁾	Duty cycle	-	45	-	55	%	
t _{Stab(HSI)}	HSI stabilization time	-	-	2	4(1)	μs	
		48 MHz	-	254	-		
I _{CC (HSI)} ⁽²⁾	HSI power consumption	24 MHz	-	193	-	μΑ	
		8 MHz	-	110	-		
		4 MHz	-	100	-		

1. Guaranteed by design, not tested in production.

2. Data based on characterization results, not tested in production.

5.3.8. Low-speed internal (LSI) RC oscillator

Table 5-15 LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	LSI frequency	T _A = 25 °C, V _{CC} = 3.3 V	31.6	32.768	33.6	kHz
$\Delta_{\text{Temp(LSI)}}$	LSI frequency drift over temperature	T _A = 0 to 105 °C	-15 ⁽²⁾	-	15 ⁽²⁾	%
		T _A = -40 to 105 °C	-20(2)	-	20(2)	
f _{TRIM} ⁽¹⁾	LSI trimming accuracy	-	-	0.2	-	%
t _{Stab(LSI)} ⁽¹⁾	LSI stabilization time	-	-	150	-	μs
I _{CC(LSI)} ⁽¹⁾	LSI power consumption	-	-	210	-	nA
- 1. Guaranteed by design, not tested in production.
- 2. Data based on characterization results, not tested in production.

5.3.9. Memory characteristics

Table 5-16 Memory characteristics

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Page programming time	-	1.0	1.5	ms	
t _{ERASE}	Page/sector/mass erase time	-	3.5	5.0	ms	
1	Page programming supply current	-	2.1	2.9	m۸	
ICC	Page/sector/mass erase supply current	-	2.1	2.9	mA	

1. Guaranteed by design, not tested in production.

Table 5-17	Memory	endurance	and data	retention
	wichiory	chaulanoc	una auta	recondon

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END} Endur	Endurance	T _A = -40 to 85 °C	100	kovolo
	Endurance	T _A = 85 to 105 °C	10	kcycle
+	Data retention time	10 kcycle T _A = 55 °C	20	Voor
τ _{RET}		1 kcycle T _A = 85 °C	10	Year

1. Data based on characterization results, not tested in production.

5.3.10. EFT characteristics

Table 5-18 EFT characteristics

Symbol	Parameter	Conditions	Grade
EFT to power	-	IEC61000-4-4	4A

5.3.11. ESD & LU characteristics

Table 5-19 ESD&LU characteristics

Symbol	Parameter	Conditions	Тур	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	ESDA/JEDEC JS-001-2017	6	kV
V _{ESD(CDM)}	Electrostatic discharge voltage (charged device model)	ESDA/JEDEC JS-002-2018	1	kV
LU	Static Latch-up class	JESD78E	200	mA

5.3.12. Port characteristics

Table 5-20 Port static characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IH}	Input high level voltage	V _{CC =} 1.7 to5.5 V	0.7*V _{CC}	-	-	V
V _{IL}	Input low level voltage	V _{CC =} 1.7 to 5.5 V	-	-	0.3*V _{CC}	V
V _{hys} ⁽¹⁾	Schmitt trigger hysteresis	-	-	200	-	mV
l _{ikg}	Input leakage current	-	-	-	1	μA
R _{PU}	Weak pull-up equivalent resistor	-	30	50	70	kΩ

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PD}	Weak pull-down equivalent resistor	-	30	50	70	kΩ
C _{IO} ⁽¹⁾	Pin capacitance	-	-	5	-	pF
t _{ns(EXTI)} ⁽¹⁾	Input filter width(EXTI)	ENI=1, ENS=1	3	5	10	ns
t _{ns(I2C)} ⁽¹⁾	Input filter width(I ² C)	ENI=1, EIIC=1	70	90	120	ns

1. Guaranteed by design, not tested in production.

Symbol	Parameter ⁽²⁾	Con	ditions	Min	Мах	Unit
			I _{OL} = 70 mA, V _{CC} ≥ 5.0 V	-	0.6	
		GPIOx_OSPEEDR=11	I _{OL} = 50 mA, V _{CC} ≥ 3.0 V	-	0.5	
V (1)	Output low level		I _{OL} = 8 mA, V _{CC} ≥ 2.7 V	-	0.4	v
V _{OL} ⁽¹⁾ voltage for an I/O pin	GPIOx_OSPEEDR=01	I _{OL} = 4 mA, V _{CC} = 1.8 V	-	0.4	v	
		I _{OL} = 4 mA, V _{CC} ≥ 2.7 V	-	0.4		
		GPIOx_OSPEEDR=00	I _{OL} = 2 mA, V _{CC} = 1.8 V	-	0.4	
		GPIOx_OSPEEDR=11 -	I_{OH} = 18 mA, $V_{CC} \ge 5.0 \text{ V}$	V _{cc} -0.6	-	
			I_{OH} = 8 mA, V_{CC} > 2.7 V	V _{CC} -0.4	-	
	Output high level		$I_{OH} = 4 \text{ mA}, V_{CC} = 2.7 \text{ V}$	V _{CC} -0.4	-	
V _{OH} ⁽¹⁾	voltage for an		I _{OH} = 2 mA, V _{CC} = 1.8 V	V _{CC} -0.4	-	V
	I/O pin		I_{OH} = 12 mA, $V_{CC} \ge 5.0 \text{ V}$	V _{CC} -0.6	-	
		GPIOx_OSPEEDR=10	I_{OH} = 4 mA, V_{CC} > 2.7 V	V _{CC} -0.4	-	
			I _{OH} = 2 mA, V _{CC} = 1.8 V	V _{CC} -0.4	-	

1. These I/O types refer to the terms and symbols defined by pins.

2. Data based on characterization results, not tested in production.

 The combined maximum current across all output pins (including contributions from both V_{OL} and V_{OH} states) must not exceed the ΣI_{IO(PIN)} maximum rating specified in <u>Table 5-2 Current Characteristics</u>.

Table 5-22 Output low level voltage for I²C (Open-drain output) Characteristics ⁽³⁾

Symbol	Parameter ⁽²⁾	Conditions		Min	Мах	Unit
		GPIOx OSPEEDR=11	I_{OL} = 40 mA, $V_{CC} \ge 5.0 V$	-	0.6	
	Output low level (1) voltage for COM	_	I _{OL} = 30 mA, V _{CC} ≥ 3.0 V	-	0.5	
V _{OL} ⁽¹⁾		GPIOx OSPEEDR=01	I _{OL} = 8 mA, V _{CC} ≥ 2.7 V	-	0.4	V
VOL	IO_OD(I ² C)	GFIOX_OSPEEDR=01	I _{OL} = 4 mA, V _{CC} = 1.8 V	-	0.4	V
			I_{OL} = 4 mA, $V_{CC} \ge 2.7 V$	-	0.4	
		GPIOx_OSPEEDR=00	I _{OL} = 2 mA, V _{CC} = 1.8 V	-	0.4	

1. These I/O types refer to the terms and symbols defined by pins.

2. Data based on characterization results, not tested in production.

3. The combined maximum current across all output pins (including contributions from both V_{OL} and V_{OH} states) must not exceed the $\Sigma I_{IO(PIN)}$ maximum rating specified in <u>Table 5-2 Current Characteristics</u>.

5.3.13. ADC characteristics

Table 5-23	ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CC}	ADC supply voltage	-	1.8	-	5.5	V
I _{cc}	Current consumption from V _{CC}	f _s =0.75 Msps	-	300	-	μA
$C_{ADC}^{(1)}$	Internal sampling and holding capacitor	-	-	5	8	pF
$R_{AIN}^{(1)(3)}$	External input impedance	-	-	-	31	kΩ
R _{ADC} ⁽¹⁾	Sampling switch resistance	-	-		2.5	kΩ
		$V_{REF+} = V_{CC} = 1.8 \text{ to } 2.3 \text{ V}$	0.8	3	6(2)	MHz
f _{ADC}	ADC clock frequency	$V_{REF+} = V_{CC} = 2.3 \text{ to } 5.5 \text{ V}$	0.8	6	12 ⁽²⁾	
		V _{REF+} = V _{REFBUF}	0.375	-	0.75	
	Sampling rate	$V_{REF+} = V_{CC} = 1.8$ to 2.3 V	0.05) -	0.375	
f _S		$V_{REF+} = V_{CC} = 2.3 \text{ to } 5.5 \text{ V}$	0.05	-	0.75	Msps
		V _{REF+} = V _{REFBUF}	0.023	-	0.046	
t (1)		f _{ADC} = 12 MHz	5.83	-	9.92	μs
t _{CAL} ⁽¹⁾	Calibration time		70	-	119	1/f _{ADC}
		f _{ADC} = 6 MHz	0.438	-	29.94	μs
. (1)		V _{CC} = 1.8 - 2.3 V	3.5	-	239.5	1/f _{ADC}
t _{samp} ⁽¹⁾	Sampling time	f _{ADC} =12 MHz	0.292	-	19.96	μs
		V_{cc} =2.3 to 5.5 V	3.5	-	239.5	1/f _{ADC}
t _{samp_int} (1)	Sampling time for internal channels	-	20		μs	
t _{conv} (1)	Total conversion time	V _{CC} =1.8 to 5.5 V	12	12 - 248		1/f _{ADC}
t _{eoc} ⁽¹⁾	Conversion end time	V _{CC} =1.8 to 5.5 V		0.5		1/f _{ADC}

1. Guaranteed by design, not tested in production.

2. Data based on characterization results, not tested in production.

3. Equation 1: R_{AIN} maximum formula

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 5-24 R_{AIN} max for $f_{ADC}\text{=}12~MHz^{(1)}$

Ts (cycles)	t _s (μs)	R _{AIN} max (kΩ)
3.5	0.29	0.3

Ts (cycles)	t _s (μs)	R _{AIN} max (kΩ)
5.5	0.46	1.9
7.5	0.62	3.5
13.5	1.12	8.3
28.5	2.37	20.4
41.5	3.46	30.9
134.5	11.21	-
239.5	15.96	-

Table 5-25 ADC accuracy ⁽¹⁾⁽²	able 5-25 ADC a	accuracy ⁽¹⁾⁽²⁾)
--	-----------------	----------------------------	---

1. Guaranteed	by design, not tested in prod	luction.				
	Table 5-25 ADC accuracy ⁽¹⁾⁽²⁾					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ET	Total unadjusted error		-	±10.0		LSB
EO	Offset error		-	± 3.0	-	LSB
EG	Gain error	$f_{ADC} = 12 \text{ MHz},$ $V_{REF+} = V_{CC} = 2.3 \text{ to } 5.5$ V	<u>-</u>	± 5.0	-	LSB
DNL	Differential linearity error		-	± 1.5	-	LSB
INL	Integral linearity		5	± 6.5	-	LSB
ENOB	Effective number of bits		-	9.0	-	bit

1. ADC DC accuracy values are measured after internal calibration.

2. Data based on characterization results, not tested in production.

3. Guaranteed by design, not tested in production.

5.3.14. Comparator characteristics

Table 5-26 Comparator characteristics

Symbol	Parameter		Conditions		Тур	Max	Unit
V _{IN} ⁽¹⁾	Input voltage range	-	-		-	V _{CC} -1.5	V
t _{START} ⁽¹⁾	Startup time	-			-	5	μs
		200 mV	Output from low to high	-	200	-	
t _D ⁽¹⁾	t _D ⁽¹⁾ Propagation delay step,100mV over-drive	step,100mV over-drive	Output from high to low	-	150	-	ns
V _{offset} ⁽¹⁾	Offset voltage	-		-	±5	-	mV
V _{hys} ⁽¹⁾	Hysteresis voltage	No hysteresis	No hysteresis		0	-	mV
I _{CC} ⁽²⁾	Current consumption from V_{CC}	-		-	50	-	μA

1. Data based on characterization results, not tested in production.

2. Guaranteed by design, not tested in production.

5.3.15. Temperature sensor characteristics

Symbol	Parameter		Тур	Max	Unit
T _L ⁽¹⁾	V_{TS} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30 °C (±5 °C)	0.74	0.76	0.78	V
t _{START} ⁽¹⁾	Start up time entering in continuous mode	-	70	120	μs
t _{S_setup} ⁽¹⁾	ADC sampling time when reading the temperature	20	-	-	μs

Table 5-27 Temperature sensor characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

5.3.16. Embedded internal voltage reference(V_{REFINT}) characteristics

Table F 00	Internel veltere	reference b	\cdots	ab are stariatics(1)
Table 3-20	internal voltage	reference b	uner (v _{REFINT})	characteristics ⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Unit
V _{REFINT}	Internal voltage reference	1.17	1.2	1.23	V
t _{start_VREFINT}	Start time of V _{REFINT}	-	10	15	μs
T _{coeff_VREFINT}	Temperature coefficient of V_{REFINT}		-	100 ⁽¹⁾	ppm/°C
Icc	V_{REFINT} current consumption from V_{CC}		12	20	μA

1. Guaranteed by design, not tested in production.

5.3.17. Internal voltage reference buffer (VREFBUF) characteristics

Table 5-29 Internal voltage reference buffer (VREFBUF) characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REF25}	2.5 V internal reference buffer	T _A = 25 °C, V _{CC} = 3.3 V	2.425	2.5(2)	2.575	V
V _{REF20}	2.048 V internal reference buffer	T _A = 25 °C, V _{CC} = 3.3 V	1.988	2.048(2)	2.108	V
V _{REF15}	1.5 V internal reference buffer	T _A = 25 °C, V _{CC} = 3.3 V	1.485	1.5 ⁽²⁾	1.515	V
T _{coefft_VREFBUF}	Temperature coefficient of V _{REFBUF}	T _A = -40 to 105 °C	-	-	120 ⁽¹⁾	ppm/°C
t _{start_VREFBUF}	Start time of V _{REFBUF}	-	-	10	15	μs

1. Guaranteed by design, not tested in production.

2. 1.5 V internal reference buffer precision value storage address: 0x1FFF002E.

2.048 V internal reference buffer precision value storage address: 0x1FFF0032.

2.5 V internal reference buffer precision value storage address: 0x1FFF0036.

eg: Reading the 16-bit value 0x1501 from address 0x1FFF002E indicates a reference voltage precise value of 1.501 V.

5.3.18. COMP voltage reference buffer characteristics

Table 5-30 V_{REFCMP} for Comparator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ΔV_{abs}	Absolute deviation	-	-	-	±0.5	LSB
t _{start_VREFCMP}	Start time of V_{REFCMP}	-	-	10	15	μs

1. Guaranteed by design, not tested in production.

5.3.19. Timer characteristics

Symbol	Parameter	Conditions	Min	Мах	Unit
	Timer resolution time	-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 48 MHz	20.833	-	ns
	Timer external clock frequency on	-	-	f _{TIMxCLK} /2	
f _{EXT}	CH1 to CH4	f _{TIMxCLK} = 48 MHz	-	24	MHz
Res _{TIM}	Timer resolution time	TIM1/3/14/16/17	-	16	bit
	10 bit counter internal clack period	-	1	65536	t _{TIMxCLK}
t _{COUNTER}	16-bit counter internal clock period	f _{TIMxCLK} = 48 MHz	0.020833	1365	μs

Table 5-32 LPTIM characteristics (timeout period at 32.768 kHz LSI)

Prescaler	PRESC[2:0]	Min	Max	Unit
/1	0	0.0305	1998.848	
/2	1	0.0610	3997.696	
/4	2	0.1221	8001.9456	-
/8	3	0.2441	15997.3376	
/16	4	0.4883	32001.2288	ms
/32	5	0.9766	64002.4576	-
/64	6	1.9531	127998.3616	
/128	7	3.9063	256003.2768	

Table 5-33 IWDG characteristics (timeout period at 32.768 kHz LSI)

Prescaler	PR[2:0]	Min	Мах	Unit
/4	0	0.122	499.712	
/8	1	0.244	999.424	
/16	2	0.488	1998.848	
/32	3	0.976	3997.696	ms
/64	4	1.952	7995.392	
/128	5	3.904	15990.784	
/256	6 or 7	7.808	31981.568	

5.3.20. Communication interfaces

5.3.20.1. I²Cinterface characteristics

I²C interface meets the requirements of the I²C bus specification and user manual:

- Standard mode (Sm): 100 kbit/s
- Fast mode (Fm): 400 kbit/s

I²C SDA and SCL pins have analog filtering, see table below.

Symbol	Parameter	Min	Max	Unit
t _{AF}	Limiting duration of spikes suppressed by the filter (Spikers shorter than the limiting duration are suppressed)	50	260	ns

Table 5-34 I²C filter characteristics

5.3.20.2. SPI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}		Master mode	-	12(1)	
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	6 ⁽²⁾ MH2	MHz
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF		6	ns
t _{su(NSS)}	NSS setup time	Slave mode, presc = 8	4Tpclk	-	ns
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk - 1	Tpclk + 1	ns
t _{su(MI)}		Master mode	4	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	ns
t _{h(MI)}	Deta input hold time	Master mode	5.5	-	
t _{h(SI)}	Data input hold time	Slave mode	4	-	ns
t _{a(SO)}	Data output access time	Slave mode	9	34	ns
t _{dis(SO)}	Data output disable time	Slave mode	9	16	ns
$t_{v(SO)}$	Data output valid time	Slave mode (after enable edge)	-	22	ns
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	4.5	ns
t _{h(SO)}	Data autout hold time	Slave mode (after enable edge)	6	-	
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	2	-	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	45	55	%

Table 5-35 SPI characteristics

1. The test condition for this parameter is full-duplex mode.

2. The test condition of Parameter is single-wire mode, and the maximum is 1.5 MHz in full-duplex mode.

Figure 5-4 SPI timing diagram–Slave mode and CPHA=0

Figure 5-5 SPI timing diagram–Slave mode and CPHA=1

Figure 5-6 SPI timing diagram-Master mode

6. Package information

6.1. TSSOP20 package size

6.2. SOP16 package size

6.3. SOP8 package size

7. Ordering information

3

Example: PY 32 F 002B F1 5 P 6 x - C Company Product family ARM® based 32-bit microcontroller Product type F = General purpose Sub-family 002B = PY32F002Bxx Pin count F1 = 20 pins Pinout1 W1 = 16 pins Pinout1 L1 = 8 pins Pinout1
User code memory size 5 =24 KB Package P = TSSOP S = SOP
Temperature range 6 = -40 to + 85 °C 7 = -40 to + 105 °C
Options xxx = code ID of programmed parts(includes packing type) TR = tape and reel packing TU = tube packing blank = tray packing Delimiter character
Version C = Wafer version is C

8. Version history

Versio	n Date	Descriptions
V1.0	2025.05.20	Initial version
V1.1	2025.06.24	Product definition change: Maximum operating frequency adjusted to 48 MHz.

Puya Semiconductor Co., Ltd.

IMPORTANT NOTICE

Puya reserve the right to make changes, corrections, enhancements, modifications to Puya products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information of Puya products before placing orders. Puya products are sold pursuant to terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice and use of Puya products. Puya does not provide service support and assumes no responsibility when products that are used on its own or designated third party products. Puya hereby disclaims any license to any intellectual property rights, express or implied. Resale of Puya products with provisions inconsistent with the information set forth herein shall void any warranty granted by Puya. Any with Puya or Puya logo are trademarks of Puya. All other product or service names are the property of their respective owners. The information in this document supersedes and replaces the information in the previous version.

Puya Semiconductor Co., Ltd. – All rights reserved